Target Language Adaptation of Discriminative Transfer Parsers

نویسندگان

  • Oscar Täckström
  • Ryan T. McDonald
  • Joakim Nivre
چکیده

We study multi-source transfer parsing for resource-poor target languages; specifically methods for target language adaptation of delexicalized discriminative graph-based dependency parsers. We first show how recent insights on selective parameter sharing, based on typological and language-family features, can be applied to a discriminative parser by carefully decomposing its model features. We then show how the parser can be relexicalized and adapted using unlabeled target language data and a learning method that can incorporate diverse knowledge sources through ambiguous labelings. In the latter scenario, we exploit two sources of knowledge: arc marginals derived from the base parser in a self-training algorithm, and arc predictions from multiple transfer parsers in an ensemble-training algorithm. Our final model outperforms the state of the art in multi-source transfer parsing on 15 out of 16 evaluated languages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Etudy of Non-Lexical Extensions to Delexicalized Transfer

We propose a simple cross-language parser adaptation strategy for discriminative parsers and apply it to easy-first transition-based dependency parsing (Goldberg and Elhadad, 2010). We evaluate our parsers on the Indo-European corpora in the CoNLL-X and CoNLL 2007 shared tasks. Using the remaining languages as source data we average under-fitted weights learned from each source language and app...

متن کامل

Dependency Grammar Induction via Bitext Projection Constraints

Broad-coverage annotated treebanks necessary to train parsers do not exist for many resource-poor languages. The wide availability of parallel text and accurate parsers in English has opened up the possibility of grammar induction through partial transfer across bitext. We consider generative and discriminative models for dependency grammar induction that use word-level alignments and a source ...

متن کامل

Dependency Grammar Induction via Bitext Projection Constraints

Broad-coverage annotated treebanks necessary to train parsers do not exist for many resource-poor languages. The wide availability of parallel text and accurate parsers in English has opened up the possibility of grammar induction through partial transfer across bitext. We consider generative and discriminative models for dependency grammar induction that use word-level alignments and a source ...

متن کامل

Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

Täckström, O. 2013. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision. Acta Universitatis Upsaliensis. Studia Linguistica Upsaliensia 14. xii+215 pp. Uppsala. ISBN 978-91-554-8631-0. Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the ling...

متن کامل

Data point selection for cross-language adaptation of dependency parsers

We consider a very simple, yet effective, approach to cross language adaptation of dependency parsers. We first remove lexical items from the treebanks and map part-of-speech tags into a common tagset. We then train a language model on tag sequences in otherwise unlabeled target data and rank labeled source data by perplexity per word of tag sequences from less similar to most similar to the ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013